4646 Bachelor of Environmental Engineering (Honours) and Bachelor of Science 2015

Environmental Engineering

Stage one:

computing

Sem	ENE1621 Environmental	ENG1002 Engineering	Science unit from level one	Science unit from level
1	engineering	design: cleaner, safer,	list below	one list below
		smarter <u>or</u> MTH1020 (for		
		students without VCE		
		Specialist Maths)		
Sem	ENG1060 Engineering	MTH1030 Techniques for	Science unit from level one	Science unit from level

(48 credit points)

one list below

Stage two (48 credit points)

list below

modelling

Sem	BIO2011 Ecology and	ENG1001 Engineering	ENG2091 Advanced	Science unit
1	biodiversity	design: lighter, faster,	engineering mathematics A	
		stronger		
Sem	BIO2040 Conservation	ENV2022 Environmental	Science unit or ENG1002 (if	Science unit
2	biology	analysis I: Sampling and	not taken at stage one)	
		monitoring		

Stage three (48 credit points)

_				
Sem 1	ATS2548 Environmental policy and management	CIV2263 Water systems	CHE2164 Thermodynamics I	Science unit
Sem 2	ENV3022 Environmental technology	CIV2282 transport and traffic engineering	CHE2162 Material and energy balances	Science unit

Stage four (48 credit points)

Sem	CHE3163 Sustainable	CIV3248 Groundwater	ECC2800 Prosperity,	ENE3048 Energy and the
1	processing I* or CIV3205	and environmental	poverty and sustainability	environment
	Project management for civil	geomechanics	in a globalised world	
	engineers**			
Sem	ENE2503 Materials	ENE3606 The air	Science unit	Science unit
2	properties and recycling	environment		

Stage five (48 credit points)

Sem	CIV3264 Urban water and	ENE3608 Environmental	Environmental Eng stream	Environmental Eng
1	wastewater systems	impact assessment and	elective	stream elective
		management		
Sem	CHE4170 Design project (12cp)* <u>or</u> ENE4603	BTC3100 Sustainability and	ENE4607 Environmental
2	Environmental project A and E	NE4212 Environmental	the law	risk assessment
	design**			

^{*} For students undertaking the Environmental process engineering stream.

Level 1 Science units:

Select two pairs of science units from:

- ASP1010 Earth to cosmos introductory astronomy and ASP1022 life and the universe
- ATS1310 Extreme earth: natural hazards and human vulnerability <u>and</u> ATS1301 Australian physical environments: Evolution, status and management or ATS1309 The global challenge
- BIO1011 Biology I and BIO1022 Biology II
- CHM1011 chemistry I or CHM1061 Chemistry I advanced, <u>plus</u> CHM1022 chemistry II or CHM1052 Chemistry II advanced
- ESC1011 Planet earth: our place in the universe <u>and</u> ESC1022 Planet earth; Surface processes
- FIT1029 Algorithmic problem solving $\underline{\text{and}}$ FIT1040 programming fundamentals
- PHS1011 Physics (or PHS1080 Foundation physics) <u>and</u> PHS1022 Physics
- STA1010 Statistical methods for science \underline{and} MAT1830 Discrete mathematics for computer science

^{**} For students undertaking the Water and land management or Transport and the built environment streams

4646 Bachelor of Environmental Engineering (Honours) and Bachelor of Science 2015

Environmental Stream Electives:

Students complete two electives from one of the following streams:

Environmental process engineering:

CHE3161 Chemistry and chemical thermodynamics

CHE3162 process control

CHE3164 Reaction engineering

CHE3265 Separation processes

CHE3166 Process design

Che3175 Sustainable process engineering case studies

CHE4173 Sustainable processing 2

ENE4603 Environmental project A MTE4593 Materials and environment

MTE4599 Materials for energy technologies

Water and land management:

CIV2207 computer and water systems modelling

CIV3247 Geomechanics II

CIV3204 Engineering investigations

CIV4248 Ground hazards engineering

CIV4261 Integrated urban water management

CIV2226 Design of concrete and masonry structure

CIV4268 Water resources management

ENE4604 Environmental project B

MTE4593 Materials and environment

MTE4599 Materials for energy technologies

Transport and the built environment:

CIV2206 Mechanics of solids

CIV2225 Design of steel and timber structures

CIV3221 Building structures and technology

CIV3247 Geomechanics II

CIV3283 road engineering

CIV4234 Advanced structural analysis

CIV4235 Advanced structural design

CIV4249 foundation engineering

CIV4283 Transport planning

CIV4284 transport systems

ENE4604 Environmental project B

MTE4593 Materials and environment

MTE4599 Materials for energy technologies

Notes:

Credit points	Unless specified, all units are worth 6 credit points			
	Bachelor of Environmental Engineering 22 units x 6cp = Total of 132 credit poi	nts		
	Bachelor of Science 18 units x 6cp = Total of 108 credit points (T	otal: 240cp)		
Unit requisites	All pre-requisite and co-requisite requirements must be undertaken in order to	be able to		
	enrol into a specific unit			
Duration of degree	5 years full-time, 10 years part-time			
Time limit	10 years. Students have ten years in which to complete this award from the time they			
	commence first year. Periods of intermission are counted as part of the ten years.			
Course advice	www.eng.monash.edu.au/current-students/course-advice.html			
	http://monash.edu/science/current/undergraduate/help/	http://monash.edu/science/current/undergraduate/help/		
Monash handbook	Students should follow the course requirements for the year the course was co	mmenced		
Wienesii nanabook	http://monash.edu/pubs/2015handbooks/courses/index-byfaculty-eng.html			

All information correct at publication but may be subject to change – 14 January 2015 Faculty of Engineering, Monash University CRICOS code 069010F